Rapid evolution of tolerance to road salt in zooplankton.
نویسندگان
چکیده
Organisms around the globe are experiencing novel environments created by human activities. One such disturbance of growing concern is the salinization of freshwater habitats from the application of road deicing salts, which creates salinity levels not experienced within the recent evolutionary history of most freshwater organisms. Moreover, salinization can induce trophic cascades and alter the structure of freshwater communities, but knowledge is still scarce about the ability of freshwater organisms to adapt to elevated salinity. We examined if a common zooplankton of freshwater lakes (Daphnia pulex) could evolve a tolerance to the most commonly used road deicing salt (sodium chloride, NaCl). Using a mesocosm experiment, we exposed freshwater communities containing Daphnia to five levels of NaCl (15, 100, 200, 500, and 1000 mg Cl- L-1). After 2.5 months, we collected Daphnia from each mesocosm and raised them in the lab for three generations under low salt conditions (15 mg Cl- L-1). We then conducted a time-to-death experiment with varying concentrations of NaCl (30, 1300, 1500, 1700, 1900 mg Cl- L-1) to test for evolved tolerance. All Daphnia populations exhibited high survival when subsequently exposed to the lowest salt concentration (30 mg Cl- L-1). At the intermediate concentration (1300 mg Cl- L-1), however, populations previously exposed to elevated concentrations (i.e.100-1000 mg Cl- L-1) had higher survival than populations previously exposed to natural background levels (15 mg Cl- L-1). All populations survived poorly when subsequently exposed to the highest concentrations (1500, 1700, and 1900 mg Cl- L-1). Our results show that the evolution of tolerance to moderate levels of salt can occur within 2.5 months, or 5-10 generations, in Daphnia. Given the importance of Daphnia in freshwater food webs, such evolved tolerance might allow Daphnia to buffer food webs from the impacts of freshwater salinization.
منابع مشابه
Evolution to environmental contamination ablates the circadian clock of an aquatic sentinel species
Environmental contamination is a common cause of rapid evolution. Recent work has shown that Daphnia pulex, an important freshwater species, can rapidly evolve increased tolerance to a common contaminant, sodium chloride (NaCl) road salt. While such rapid evolution can benefit organisms, allowing them to adapt to new environmental conditions, it can also be associated with unforeseen tradeoffs....
متن کاملScreening Egyptian Wheat Genotypes for Salt Tolerance at Early Growth Stages
Parameters that show a significant genotypic variation at early growth stages and are associated with salt tolerance at later stages may be used as rapid and economic screening criteria in breeding programs. The objective of this study was to test growth parameters at early growth stages for evaluating the salt tolerance of wheat genotypes. Ten wheat genotypes that differ from their salt tolera...
متن کاملRoad Salts as Environmental Constraints in Urban Pond Food Webs
Freshwater salinization is an emerging environmental filter in urban aquatic ecosystems that receive chloride road salt runoff from vast expanses of impervious surface cover. Our study was designed to evaluate the effects of chloride contamination on urban stormwater pond food webs through changes in zooplankton community composition as well as density and biomass of primary producers and consu...
متن کاملWater relations, pigment stabilization, photosynthetic abilities and growth improvement in salt stressed rice plants treated with exogenous potassium nitrate application
Potassium is a major nutrient which may play an important role in many processes such as ion homeostasis in plant cells and osmotic adjustment of guard cells during stomatal opening and closing. Pathumthani 1 (PT1) rice has been reported as being a salt sensitive cultivar and has been selected as a model plant in this study to investigate the possibility of improving the osmotic potential, pigm...
متن کاملNuclear and Cytoplasmic Inheritance of Salt Tolerance in Bread Wheat Plants Based on Ion Contents and Biological Yield
Although inter-variety variability for salt tolerance has been reported in bread wheat plants, little information is available on the genetic control of ion contents and biomass yield under saline conditions. A diallel cross, including reciprocals of two salt tolerant, two moderately tolerant and two sensitive Iranian and exotic bread wheat varieties, was analyzed to investigate the inheritance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental pollution
دوره 222 شماره
صفحات -
تاریخ انتشار 2017